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Current implementations of k-t Broad-use Linear Acqusition
Speed-up Technique (BLAST) require the sampling in k-t space
to conform to a lattice. To permit the use of k-t BLAST with
non-Cartesian sampling, an iterative reconstruction approach
is proposed in this work. This method, which is based on the
conjugate gradient (CG) method and gridding reconstruction
principles, can efficiently handle data that are sampled along
non-Cartesian trajectories in k-t space. The approach is dem-
onstrated on prospectively gated radial and retrospectively
gated Cartesian imaging. Compared to a sliding window (SW)
reconstruction, the resulting image series exhibit lower artifact
levels and improved temporal fidelity. The proposed approach
thus allows investigators to combine the specific advantages
of non-Cartesian imaging or retrospective gating with the
acceleration provided by k-t BLAST. Magn Reson Med 55:
85–91, 2006. © 2005 Wiley-Liss, Inc.
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To achieve faster dynamic imaging, k-space is often un-
dersampled, and accordingly there is great interest in re-
construction methods that are able to cope with the result-
ing aliasing. Fortunately, image series of naturally occur-
ring objects show considerable correlation in space and
time, and hence permit an approximation with fewer de-
grees of freedom compared to a full sampling of k-space for
each time point. This aspect is being exploited by a num-
ber of new fast dynamic imaging techniques, such as una-
liasing by Fourier-encoding the overlaps using the tempo-
ral dimension (UNFOLD) (1), k-t Broad-use Linear Acqui-
sition Speed-up Technique (BLAST) (2), temporal
sensitivity encoding (TSENSE) (3), and k-t SENSE (2).

These techniques accelerate the imaging by skipping the
acquisition of certain data. This undersampling leads to
aliasing, which is removed by adaptive temporal filtering
based on general assumptions about the imaged object
(UNFOLD), adaptive filtering incorporating explicit prior
information about the imaged object (k-t BLAST), coil
sensitivity encoding with temporal filtering for residual
aliasing reduction (TSENSE), or a combination of coil sen-

sitivity encoding and k-t BLAST (k-t SENSE). For all of
these techniques, the reconstruction is considerably sim-
plified by restricting the sampling to a sheared grid (or
lattice) in k-t space (k is the spatial frequency, and t is the
temporal dimension), because this causes the aliasing to
also be confined to a lattice in the corresponding x-f space
(x is the spatial dimension, and f is the temporal fre-
quency) (4–6). The point spread function (PSF) in x-f
space simply becomes a set of �-functions, and the aliasing
can be resolved separately for small sets of points in x-f
space, thus allowing a substantially faster reconstruction.
Therefore, to date the above-mentioned dynamic imaging
techniques have been applied mainly to acquisition meth-
ods that sample k-t space on a lattice.

Although the condition of lattice sampling is often met,
a number of relevant and useful acquisition methods are
excluded by it. One example is radial imaging. The more
complicated PSF makes radial acquisitions unsuitable for
the simplified reconstruction, but since trajectories with
circular symmetry have inherent advantages for motion
they are interesting for dynamic studies. In k-t BLAST
there is the additional advantage that the training data are
readily available from the densely sampled center of k-
space. Another example is acquisition using retrospective
cardiac gating (7). Such acquisitions are also difficult to
adapt to the simplified reconstruction because the precise
timing (with respect to the length of the cardiac cycle) of
each individual k-space profile is unknown at the time of
acquisition. In this case, the resulting PSF depends both
on heart rate variations and the undersampling strategy
used.

Examples of non-Cartesian k-space sampling and tem-
poral processing have been presented. UNFOLD has been
used in conjunction with spiral sampling (1), but only for
cases in which the dynamics of the object occur at a single
known frequency. This simplified assumption entails that
the reconstruction involves only gridding followed by fil-
tering, and it does not involve actually solving the inverse
problem. Similarly, undersampled radial imaging has been
used with low-pass filtering in the temporal direction (i.e.,
sliding window (SW)) to reduce the streaking artifacts (8).
In another approach, finite support constraint is used to
remove streaking artifacts in undersampled radial imaging
(10). The k-t BLAST method, which is the focus of this
paper, has also been used in non-Cartesian (radial) imag-
ing, but only using an approximation in the reconstruction
procedure (11). Common to all of these examples is the fact
that they either do not solve the inverse problem or the
inverse problem is simplified (e.g., Ref. 10). In this paper
we present a method for solving the inverse problem in a
practical way.
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The original paper on k-t BLAST and k-t SENSE (2)
described mathematically how to reconstruct image series
from an non-Cartesian sampling of k-t space. The recon-
struction involves an inversion, which is impractical to
solve with direct methods. An iterative approach was
therefore suggested. However, to date it has not been dem-
onstrated in practice.

A related problem is encountered when the parallel
imaging technique SENSE (12) is applied to non-Cartesian
k-space sampling. It has been shown that an efficient re-
construction is possible in this case with the use of an
iterative approach that relies on the conjugate gradient
(CG) method and gridding reconstruction principles (13).
In this work we propose to use a similar approach to solve
the inverse problem that arises in k-t BLAST with non-
Cartesian k-t space sampling, and we demonstrate its fea-
sibility with two applications: 1) radial k-space sampling
and 2) Cartesian k-space sampling with retrospective car-
diac gating. In addition, we explore the impact of different
sampling strategies for the retrospective cardiac gating ap-
plication. This serves to illustrate the fact that although
reconstruction from arbitrary sampling schemes is possi-
ble, the sampling strategy has a profound impact on the
reconstruction result.

MATERIALS AND METHODS

Reconstruction

The k-t BLAST reconstruction is described by (2):

�x,f � �EH�k,t
�1E � �x,f

�1��EH�k,t
�1dk,t. [1]

In this equation the encoding matrix E is defined as
E � ��k,tFTxf 3 kt	 where FTxf 3 kt denotes Fourier transfor-
mation from x-f space to k-t space, and �k,t denotes the
sampling onto an non-Cartesian trajectory. �x,f is the sig-
nal covariance matrix 
�x,f � �x,f

H �, �k,t is the noise covari-
ance matrix, and dk,t and �x,f are vectors containing the
measured data points in k-t space and the unaliased recon-
structed signal in x-f space, respectively. Superscript H
indicates the complex conjugate transpose, and super-
script � indicates the Moore-Penrose pseudo-inverse.

The signal covariance matrix �x,f is generally not avail-
able, but estimates of its diagonal elements can be obtained
rather easily from a low-spatial-resolution training data
set. Consequently, �x,f is approximated with a diagonal
matrix Mx,f

2 containing only the squared estimated signal
intensities from the training acquisition (i.e., the estimated
signal variance). This approximation has some important
consequences. First, off-diagonal elements of the signal
covariance matrix are set to zero. This adds to the stability
of the reconstruction, but it also limits the accuracy with
which the signal distribution can be recovered. Second,
since the diagonal elements are estimated from low-spa-
tial-resolution data, they will have limited accuracy,
which will influence the reconstruction. In general, if the
diagonal elements are underestimated, this will lead to too
much filtering in x-f space and usually to temporal blur-
ring. If the diagonal elements are overestimated, residual
aliasing will be present in the reconstruction. Further-
more, it is assumed that the noise is uncorrelated and
uniform in k-t space. Thus, Eq. [1] simplifies to:

�x,f � �EH�k,t
�2E � Mx,f

�2��EH�k,t
�2dk,t, [2]

where �k,t
2 is the noise variance.

The objective of a general implementation of the k-t
BLAST reconstruction is to evaluate Eq. [2] for any E. How-
ever, the size of the system matrix ( EH�k,t

�2E � Mx,f
�2) makes

the explicit calculation of its pseudo-inverse impractical.
Thus, it is preferable to use an iterative approach instead.
The CG method (14) was chosen for this work because it
has successfully been applied to a related problem arising
in non-Cartesian SENSE imaging (15). In each iteration
step, it requires the multiplication of a search vector by the
system matrix. Normally, even the evaluation of this prod-
uct is computationally demanding, but the use of gridding
reconstruction principles, as suggested in Ref. 15, allows
the complexity to be reduced to a tolerable level. Specifi-
cally, since E contains only Fourier terms, multiplications
with E and EH can be replaced with a gridding operation
and FFT.

The speed of convergence of the CG method depends on
the condition of the system matrix. Preconditioning of the
system matrix is desirable to improve conditioning and
achieve satisfactory convergence within a tolerable num-
ber of iterations. The system matrix of Eq. [2] lends itself
well to a simple preconditioning with a diagonal matrix D:

D(EH�k,t
�2E � Mx,f

�2)D(D�1�x,f) � DEH�k,t
�2dk,t. [3]

This diagonal matrix D, with elements dii, aims to equalize
the diagonal elements of the system matrix (16), which is
accomplished by choosing

dii �
1

�(EH�k,t
�2E � Mx,f

�2)ii

�
1

�N/�k,t
2 � 1/mii

2 , [4]

where N is the number of elements being Fourier trans-
formed, and mii

2 is the ith diagonal element of Mx,f
2

A comparison of Eqs. [2] and [3] shows that the precondi-
tioning does not alter the solution, since the equation to be
solved remains the same. Specifically, the purpose of the
preconditioning is separate from the purpose of the train-
ing data scan, although the training data is used to estimate
the preconditioning matrix in this case. Even if a wrong
precondition matrix is used, it will not affect the result. It
only modifies the convergence rate.

Consequently, the proposed reconstruction involves
solving Eq. [3] with the CG method. The details of the
implementation can be found in Fig. 1. Briefly, the itera-
tion starts by assuming that the solution is a vector of zeros
(i.e., no initial guess). This starting vector is then itera-
tively improved by applying the system matrix to search
vectors. The multiplication of the system matrix and the
search vector is made efficient with the use of gridding
reconstruction principles. It was implemented in Matlab
R13 (The MathWorks, Inc., Natick, MA, USA) running on
standard PC hardware.

The necessary training data (Mx,f
2 ) may be extracted di-

rectly from the undersampled imaging data if the sampling
in the center of k-space is dense enough. For example, in
the case of moderately undersampled radial imaging, a
sufficiently large region in the center of k-space is fully
sampled. A k-space shutter can be applied to extract this
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region, and the signal variance estimates needed in the
iterative reconstruction can be obtained by gridding recon-
struction.

Radial Imaging

A data set with 25 cardiac phases was acquired with pro-
spective ECG gating in a healthy volunteer. A Philips
Intera 1.5T whole-body scanner (Philips Medical Systems,
Best, The Netherlands), a five-element phased-array re-
ceive coil, and a steady-state free precession (SSFP) se-
quence were used. The matrix size was 176 
 176, the field
of view (FOV) was 440 
 440 mm2, the TR was 3.1 ms, the
TE was 1.6 ms, and the bandwidth was 1136 Hz per pixel.
A total of 208 projections were collected for each cardiac
phase, which corresponds to 25% undersampling com-
pared to the Nyquist limit of �/2 � 176 � 277 projections.
It is usually acceptable to use moderate undersampling in
radial imaging, because of the relatively benign nature of
the resulting aliasing artifacts (17). Therefore, in the fol-
lowing text the data set with 208 projections is referred to
as “fully sampled.”

This data set was used to generate undersampled data
sets for k-t BLAST reconstruction by selecting a subset of
the collected projections. Data sets with 52 and 26 projec-
tions (four- and eightfold undersampling) per frame were
generated such that the sampling pattern rotated by one
projection with each frame (e.g., for fourfold acceleration,
frame 1 contained projections [1, 5, 9, . . ., 205], frame 2
contained projections [2, 6, 10, . . ., 206], etc.). The fully
sampled central part of the k-space was extracted and used
as training data for k-t BLAST reconstruction. A k-space
shutter with a diameter of 1/4 and 1/8 of the matrix size
was used for four- and eightfold acceleration, respectively.
As in all of the following experiments, the reconstruction
was performed separately for each receive coil, and the
results were subsequently combined using the root-mean-
square (RMS) method (18). The images were compared
with those reconstructed from the fully sampled data set

both visually and in terms of RMS reconstruction error as
described in Ref. 19.

Retrospective Cardiac Gating

In retrospectively gated cardiac acquisitions, k-space pro-
files are acquired continuously while the ECG signal is
monitored. Each acquired profile is then assigned a rela-
tive time within the cardiac cycle after the ECG signal is
evaluated. Specifically, each monitored cardiac cycle un-
dergoes stretching or shrinking (normalization) to fit an
average cardiac cycle. A time point is then assigned to the
acquired profiles with respect to this average cardiac cycle.
In this work we used a simple nonlinear normalization
that takes into account the fact that variations in the R-R
interval usually affect the diastole most, while the length
of the systole remains more or less constant.

A fully sampled, retrospectively gated data set was ac-
quired in a healthy volunteer in a Philips Intera 1.5T
whole-body scanner using a five-element phased-array re-
ceive coil. An SSFP sequence with a TR of 3.9 ms and a TE
of 1.9 ms was used. The scan matrix was 192 
 150, the
FOV was 300 
 238 mm2, and the bandwidth was 724 Hz
per pixel. A total of 4580 k-space profiles were acquired
evenly distributed over the cardiac cycle. There were suf-
ficient data to reconstruct 30 cardiac phases. The data were
acquired as illustrated in the upper left corner of Fig. 2,
which is based on actual timing information from an in
vivo acquisition. The acquisition is divided into target R-R
intervals (marked with “R-R interval”) using the average
cardiac frequency entered by the user. In each of these
target R-R intervals, a set of k-space profiles is repeatedly
acquired to cover the entire cardiac cycle. A new set of
profiles is acquired in each following target R-R interval.
This strategy results in a PSF which is close to a �-func-
tion, as seen in the upper right corner of Fig. 2.

Two possible approaches for undersampling were tested
by subsampling this data set. The first approach, illus-
trated in the middle row of Fig. 2, was designed to be as

FIG. 1. Implementation of the reconstruction. The
CG method solves the system of linear equations
defined in Eq. [3]. First, the right-hand side of the
equation is formed and fed into the CG iteration. In
each iteration step a search vector is multiplied
with the system matrix. The multiplications with E
and EH are approximated with gridding recon-
struction principles as indicated. It is possible (but
not necessary) to include sampling density com-
pensation in the gridding routines. This generally
lowers the required number of iterations. The re-
sult and the remaining residual are then used to
update the search and the solution vectors. The
mentioned gridding operations are only performed
along dimensions that are nonuniformly sampled.
The procedure continues until either the residual
has fallen below a certain level or a fixed number of
iterations have been completed. In the present
implementation, no starting image (initial guess) is
used for the CG method.
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close to lattice sampling (4,5) as possible, i.e., it would
result in sampling on a sheared grid in k-t space if the
cardiac frequency of the subject was identical to the target
frequency throughout the acquisition. Optimal sampling
patterns, as described in Ref. 20, were used to extract
undersampled data sets for five- and eightfold accelera-
tion. An example of the resulting profile order, k-t sam-
pling pattern, and PSF for fivefold acceleration is shown in
the middle row of Fig. 2. Note that there are quite large
deviations in the exact location of the samples, but that the
overall appearance of the pattern still resembles the opti-
mal sheared grid. The PSF still has five distinct main
lobes, but they are no longer �-functions, and the aliasing
pattern becomes more complicated. The second approach
involved random undersampling, which has the advantage
that the aliasing becomes more diffuse and noise-like (21).
An example of the resulting profile order, k-t sampling
pattern, and PSF is provided in the lower row of Fig. 2.
The PSF has only one distinct main lobe now, and the
aliasing is being distributed in a more random fashion. A
potential disadvantage of this approach is that overlaps
among signal-bearing regions are guaranteed to occur.

The acquisition of the training data is not illustrated in
Fig. 2. It could, however, be integrated into both of the
suggested undersampling strategies straightforwardly (i.e.,
the acquisition could switch from undersampling to full
sampling for the center of k-space). Alternatively, the
training data may be acquired in a separate acquisition.

In this work the central 12 profiles of the fully sampled
data set were used as low-resolution training data. This
choice was based on previous results (19). Thus, the net
acceleration was 3.7 and 5.1 for five- and eightfold accel-
eration, respectively. k-t BLAST reconstructions were
compared with SW reconstructions in terms of the RMS

reconstruction error. In the k-t BLAST reconstruction, the
interpolation along time was handled exactly as that in
k-space in the radial experiments described above. The
sliding window reconstruction was implemented as a con-
volution along time with a triangular window. The latter
was implemented as a convolution along time with a tri-
angular window. The width of this window was equal to
the acceleration factor except that it was expanded, if no
samples fell within the window’s support at a given k-
space location and time. A normalization of the weights
within each window was used to compensate for the vari-
ations in sampling density.

CG Stopping Criteria

To investigate the convergence behavior of the proposed
reconstruction, an initial experiment based on fully sam-
pled data sets was conducted. Prospectively gated radial
and retrospectively gated Cartesian acquisitions were un-
dersampled to an acceleration factor of 8, as described
above. The residual (i.e., the 2-norm of the residuum vec-
tor) and the mean RMS reconstruction error over all car-
diac phases were monitored over several iterations. The
result of this is seen in Fig. 3. Within the first 10 iterations
the residual dropped to less than 0.1% in both cases. At
the same time the RMS reconstruction error stabilized and
there was no further improvement in the reconstruction.
This observation is based on the fact that the improve-
ments in reconstruction quality beyond this point are be-
low the noise level. Based on this finding, we chose to let
the iteration run for 10 iterations in all experiments pre-
sented here. It took approximately 3 min to perform 10
iterations for a single receive coil.

FIG. 2. Sampling strategies for retrospectively gated Cartesian imaging. The first row shows the typical sampling strategy for a full
acquisition. The measurement is grouped into target “R-R intervals,” in which a certain number of profiles are acquired repeatedly (i.e., the
same profiles are sampled for different target cardiac phases). Ideally, k-space is uniformly covered for all cardiac phases, and the resulting
PSF is very close to a �-function. Two possible strategies for an undersampled acquisition are proposed in the two lower rows. The first,
called “quasi-lattice,” aims to be as close to lattice sampling as possible. The sampling pattern (black dots) is similar to a lattice (gray dots),
and the PSF shows five distinct main lobes. However, these main lobes are not as well defined, because they are in a prospectively gated
acquisition. The locations where the five �-functions would be in the ideal case are marked with white circles. In contrast, the second
strategy, called “random,” leads to a PSF with only one distinct main lobe, and the rest of the aliasing is spread diffusely.
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RESULTS

Radial Imaging

Figure 4 shows the radial results. An x-t plot from a posi-
tion passing through the left ventricle (LV) is provided for
each reconstruction result. The x-t plots illustrate that the
k-t BLAST reconstructions capture the motion of the LV
well, whereas the SW reconstruction suffers from temporal
blurring. This is confirmed by the RMS reconstruction
error plotted on the right of Fig. 4. The SW reconstructions
show a particular increase in reconstruction error in
frames acquired around late systole, as marked by the
arrows. Furthermore, the SW reconstruction has an in-
creased reconstruction error compared to k-t BLAST in all
other cardiac phases, albeit by a smaller amount.

Retrospective Cardiac Gating

The RMS reconstruction errors for the two undersampling
strategies are given in Fig. 5. The k-t BLAST reconstruction
shows lower errors than the SW reconstruction in all
cases. Even k-t BLAST at eightfold undersampling is better
than the SW reconstruction at fivefold undersampling. The

quasi-lattice sampling performs better than the random
sampling in both k-t BLAST and SW reconstruction.

Figure 6 illustrates the artifacts that arise from SW
reconstruction. Compared to the results for full sam-
pling, the k-t BLAST reconstructions have few artifacts,
whereas the SW reconstructions have some residual
aliasing emanating from the contracting LV. There is
also less temporal blurring of the LV in the k-t BLAST
reconstructions.

DISCUSSION AND CONCLUSIONS

This paper demonstrates the feasibility of performing k-t
BLAST reconstruction from data acquired on non-Carte-
sian trajectories in k-t space. The reconstruction requires
solving a very large linear system of equations, which
makes it prohibitively time-consuming to invert it directly.
Alternatively, the inverse problem can be solved itera-
tively. The proposed combination of CG method and grid-
ding reconstruction principles reduces the computational
time of the reconstruction to a few minutes per receive
coil.

FIG. 3. Analysis of convergence. Results are
shown for retrospectively gated Cartesian (random
undersampling) and prospectively gated radial im-
aging, both with eightfold acceleration. The left
panel and right panels depict the decrease of the
residual and the RMS reconstruction error, respec-
tively. The decrease of the residual is very rapid
during the first iterations and then becomes expo-
nential. The RMS reconstruction error shows no
further substantial improvement after about 10 it-
erations (indicated by a vertical dotted line).

FIG. 4. Reconstruction results for radial im-
aging. A single frame is shown for full sam-
pling along with an x-t plot of the LV. This
plot is taken from the position indicated by
the dotted line. For four- and eightfold ac-
celeration, only x-t plots are shown. The
contraction and dilation of the LV are well
resolved by the k-t BLAST reconstruction,
whereas the SW reconstruction introduces
blurring. Especially the small jerk at the end
of the systole (marked with arrows) is much
better preserved by the k-t BLAST recon-
struction. This is also shown in the RMS
reconstruction error plots on the right.
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For radial imaging, the k-t BLAST reconstruction was
demonstrated to be superior to the SW reconstruction both
visually and quantitatively in terms of the RMS recon-
struction error. Furthermore, it was shown that the fully
sampled center of k-space can be extracted and used as
training data in the k-t BLAST reconstruction. This makes
radial imaging an interesting choice in combination with
k-t BLAST. Integrating the training into the undersampled
acquisition leads to no increase in scan time, as opposed to
Cartesian imaging (22). However, the achievable accelera-
tion is limited in this case, since the resolution of the
training data is determined by the degree of undersam-
pling. In previous work on the influence of training data
quality in Cartesian k-t BLAST (19), it was shown that
10–12 training data profiles provided good image quality,
although small structures that moved independently of the
surrounding tissue (such as small arteries in the lung)
benefited from higher-resolution training data. Translating

these results to radial imaging, accelerations up to a factor
of 10 would be possible for a 128 
 128 matrix.

For retrospectively gated Cartesian imaging, it was
shown that the proposed reconstruction is also applicable
to a non-regular sampling of the pseudo-time axis. The
RMS reconstruction error was lower for the k-t BLAST
than for the SW reconstruction for both tested undersam-
pling approaches. It turned out that the quasi-lattice un-
dersampling performed better than the random undersam-
pling. This was as expected, since the former minimizes
the overlap among signal-bearing regions in x-f space. It
also points to an advantage of radial or spiral trajectories
over arbitrary k-space sampling. Although their PSFs are
more complicated than in the Cartesian case, they are still
localized in x-f space, which minimizes signal overlap.
Furthermore, the results suggest that the performance of
the retrospectively gated k-t BLAST acquisitions can be
improved if the sampling can be made closer to the opti-

FIG. 5. Reconstruction errors for retrospec-
tively gated Cartesian imaging. The RMS
reconstruction error is shown as a function
of time (cardiac phase) for five- and eight-
fold acceleration, for both k-t BLAST and
SW reconstruction. Quasi-lattice and ran-
dom sampling patterns were used to gen-
erate the left and right graphs, respectively.
For comparison, the curves in the left graph
are also replicated in gray in the right graph.
The arrows indicate cardiac phases with in-
creased error for SW.

FIG. 6. Example cardiac phases
from the retrospectively gated ac-
quisitions using the quasi-lattice
undersampling pattern as de-
scribed in Fig. 2. A reconstruction
of the fully sampled data set is
depicted in the upper row. The
cardiac phase numbers are indi-
cated in the lower right corner of
each frame, and an x-t plot from a
position passing through the LV
(indicated with a dotted line) is
seen next to the first frame. Rows
2 and 3 show the fivefold-accel-
erated reconstructions using k-t
BLAST and SW reconstruction,
respectively. The SW reconstruc-
tions suffer from residual aliasing
artifacts (indicated with arrows)
and increased temporal blurring
(see x-t plots). Similar results are
shown for eightfold acceleration
in rows 4 and 5.
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mal sheared grid by adjusting the sampling during the
acquisition based on the ECG. Lattice sampling is gener-
ally optimal in terms of minimizing signal overlap in x-f
space. Nonetheless, reconstruction from non-Cartesian
patterns enables the use of important techniques such as
retrospective gating and radial or spiral imaging, which
offer specific advantages. The optimum choice of the sam-
pling pattern will depend on the application.

In the examples presented here, we chose to stop the
iterative reconstruction after 10 iterations. This decision
was based on an initial experiment in which the fully
sampled data were available and the reconstruction error
could be monitored. Normally, the RMS reconstruction
error is not known during the reconstruction (since the
fully sampled data set is unavailable). It is therefore pref-
erable to use a criterion that is readily available during
reconstruction (e.g., one that is based on the residual
alone), but it is generally difficult to establish such criteria
(23). As previously pointed out in Ref. 15, the residual may
not be a reliable measure of convergence. Consequently, it
is necessary to run initial convergence experiments for
new applications. Our initial experience indicates that the
residual has to be reduced by 3–5 orders of magnitude to
provide satisfactory reconstruction quality, but this may
vary with the application and the acceleration factor used.

The presented RMS reconstruction errors (Figs. 3–5)
should be treated with some caution. They are a global
measure of differences between the accelerated and non-
accelerated cases. Besides residual artifacts, they also rep-
resent changes in the distribution of noise in the recon-
structed images. The absolute value of the RMS error is of
little value for evaluating artifact levels, but it is a useful
tool for comparing two methods. The RMS error curves
also indicate deviations from the baseline error level, and
consequently they can help to identify time frames with
more artifacts or blurring. This is indicated with the ar-
rows in Figs. 5 and 6.

The main drawback of the presented method is the re-
construction time required. In the present implementa-
tion, the reconstruction time would be on the order of
hours for a typical multislice, multicoil cardiac acquisi-
tion. However, it would be possible to speed up the recon-
struction by at least an order of magnitude with the use of
a more efficient implementation (24). This would bring the
reconstruction time down to minutes with standard
present-day hardware. Furthermore, applications such as
the retrospective cardiac gating case require gridding in-
terpolation along only one dimension. Hence, the recon-
struction time is considerably shorter for this application.

The presented examples illustrate that the proposed re-
construction is capable of handling applications that do
not sample k-t space on a lattice. It enables the acceleration
provided by k-t BLAST to be combined with the specific
advantages of alternative sampling strategies. At present, it
does not take advantage of the complementary information
contained in the data that are simultaneously received by
multiple coils. Its extension to k-t SENSE will be the
subject of future work.
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